Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Uk Lee* and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-ku, Pusan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study T = 298 KMean σ (Mo–O) = 0.007 Å H-atom completeness 94% Disorder in solvent or counterion R factor = 0.043 wR factor = 0.116 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 13 November 2006

Accepted 12 December 2006

Hemiheptapotassium heminonahydrogen *a*-hexamolybdoplatinate(IV) 5.5-hydrate

The title compound, $K_{3.5}[H_{4.5}\alpha$ -PtMo₆O₂₄]·5.5H₂O, containing the hexamolybdoplatinate(IV) polyanion, was isolated at pH 2.85. The complete polyanion has no crystallographic symmetry. The $[H_{4.5}\alpha$ -PtMo₆O₂₄]^{3.5-} polyanions form an inversion-generated dimer, viz. $[H_9(PtMo_6O_{24})_2]^{7-}$, via seven strong hydrogen bonds, one of which is disordered. One K⁺ ion and one water O atom occupy inversion centres.

Comment

The α,β -geometric isomerism behaviour of Anderson-type heteropolyoxometallates (Anderson, 1937) has so far been reported only for the hexamolybdoplatinate(IV) system, viz. $[H_{3.5}\alpha$ -PtMo₆O₂₄]^{4.5-}, (II) (Lee & Sasaki, 1994), $[H_4\beta$ -PtMo₆O₂₄]⁴⁻, (III) (Lee & Sasaki, 1994), Joo *et al.*, 1994), and $[H_{4.5}\alpha$ -PtMo₆O₂₄]^{3.5-}, (IV) (Lee & Sasaki, 1994). The isolation pHs of these salts were 6.4, 5.4 and 2.5, respectively. The behaviour of this isomerism, with gradual protonation of the polyanion, is a very interesting phenomenon in polyoxometallate chemistry, and this behaviour can be established only by crystal-structure determination.

The polyanion in the title compound, (I), $[H_{4.5}\alpha$ -PtMo₆O₂₄]^{3.5-}, is isostructural with the same species in (IV). Compound (I) has the same space group, $P\overline{1}$, as compound (IV) and differs only in the incorporation of additional water molecules. The positions of the H atoms in the polyanion were not identified in compound (IV), but all the protonated O atoms in the polyanion of compound (I) were identified in the present study.

Fig. 1 shows the structure of the polyanion of (I). All atoms are located in general positions of the space group, and the symmetry of the polyanion is C_1 (1). The O atoms of the

All rights reserved

© 2007 International Union of Crystallography

Figure 1

The polyanion structure in (I). Displacement ellipsoids are drawn at the 50% probability level.

cluster were classified in the same way as described previously (Lee & Sasaki, 1994). The protonated O atoms in the polyanion were identified by the location in difference maps of the H atoms bound to O atoms, and by local structural features, as seen previously (Lee & Joo, 2006a,b; Table 1). As a result, atoms O2C, O3C, O4C, O6C and O11B in the polyanion are found to be protonated.

In the crystal structure of (I), two $[H_{4.5}\alpha$ -PtMo₆O₂₄]^{3.5-} polyanions form an $[H_9(\alpha$ -PtMo₆O₂₄)₂]⁷⁻ dimer, via seven strong hydrogen bonds (Fig. 2, Table 1). The H atom involved in the O6*C*···O6*C*ⁱ [symmetry code: (i) 1 - x, -y, 1 - z] interpolyanion hydrogen bond seems to show positional disorder, as is the case in the polyanions of (II) and $[H_{2.5}\alpha$ -PtW₆O₂₄]^{5.5-} (Lee & Joo, 2004). This is consistent with the overall stoichiometry, which requires 4.5 H atoms per cluster for charge compensation. The H atom on O3*C* does not contribute to the formation of inter-polyanion hydrogen bonds because it is located on the opposite side of the cluster (Fig. 2).

The K2 ion and O30W water molecule are located on inversion centres. The K⁺ ions are variously coordinated by O atoms as $[K1(OB)(OT)_2(OW)_4]^+$, $[K2(OB)_2(OT)_6]^+$, $[K3(OB)(OT)_5(OW)_2]^+$ and $[K4(OT)_5(OW)_2]^+$, where OT is a terminal cluster O atom, OB is an edge-shared cluster O atom and OW is an O atom of a water molecule. The O30W water molecule does not coordinate to any cation and does not form hydrogen bonds with any other O atoms.

Experimental

Crystals of (I) were prepared by the reaction of $K_2MoO_4 \cdot 2H_2O$ and $K_2Pt(OH)_6$ at pH 2.85, as described in a previous report (Lee & Sasaki, 1994).

Crystal data

 $\begin{array}{l} {\rm K}_{3.5}[{\rm H}_{4.5}{\rm PtMo_6O_{24}}] \cdot 5.5{\rm H}_2{\rm O} \\ M_r = 1395.20 \\ {\rm Triclinic}, \ P\bar{1} \\ a = 10.104 \ (2) \ {\rm \mathring{A}} \\ b = 12.214 \ (2) \ {\rm \mathring{A}} \\ c = 12.419 \ (2) \ {\rm \mathring{A}} \\ \alpha = 68.72 \ (1)^{\circ} \\ \beta = 69.33 \ (2)^{\circ} \\ \gamma = 83.634 \ (8)^{\circ} \end{array}$

Data collection

Stoe STADI4 diffractometer $\omega/2\theta$ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996) $T_{min} = 0.282, T_{max} = 0.404$ 6100 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.116100 reflections

376 parameters

H atoms treated by a mixture of independent and constrained refinement

 Table 1

 Selected geometric parameters (Å, °).

Pt-O1C	1.969 (6)	Mo3-O9B	1.931 (7)
Pt-O5C	1.992 (6)	Mo3-O17T	1.700 (6)
Pt-O6C	1.990 (5)	Mo3-O18T	1.722 (7)
Pt-O2C	2.011 (6)	Mo4-O3C	2.283 (6)
Pt-O3C	2.039 (5)	Mo4-O4C	2.335 (6)
Pt-O4C	2.019 (6)	Mo4-O9B	1.940 (7)
Mo1-O1C	2.118 (6)	Mo4-O10B	1.944 (6)
Mo1-O6C	2.316 (6)	Mo4-O19T	1.706 (6)
Mo1-O7B	1.977 (6)	Mo4-O20T	1.696 (7)
Mo1-O12B	1.977 (6)	Mo5-O4C	2.291 (6)
Mo1-O13T	1.753 (6)	Mo5-O5C	2.164 (6)
Mo1-O14T	1.713 (7)	Mo5-O10B	1.907 (6)
Mo2-O1C	2.212 (6)	Mo5-O11B	2.071 (6)
Mo2-O2C	2.300 (6)	Mo5-O21T	1.716 (7)
Mo2-O7B	1.991 (6)	Mo5-O22T	1.705 (7)
Mo2-O8B	1.934 (6)	Mo6-O5C	2.095 (5)
Mo2-O15T	1.703 (7)	Mo6-O6C	2.285 (6)
Mo2-O16T	1.728 (7)	Mo6-O11B	2.100 (7)
Mo3-O2C	2.327 (5)	Mo6-O12B	1.868 (6)
Mo3-O3C	2.288 (6)	Mo6-O23T	1.704 (6)
Mo3-O8B	1.945 (6)	Mo6-O24 <i>T</i>	1.760 (6)
Mo1-O1C-Mo2	96.5 (2)	Mo1-O7 <i>B</i> -Mo2	109.0 (3)
Mo2-O2C-Mo3	92.7 (2)	Mo2-O8B-Mo3	119.4 (3)
Mo4-O3C-Mo3	94.3 (2)	Mo3-O9 <i>B</i> -Mo4	119.9 (3)
Mo5-O4C-Mo4	92.3 (2)	Mo5-O10B-Mo4	120.0 (3)
Mo6-O5C-Mo5	104.3 (2)	Mo5-O11B-Mo6	107.4 (3)
Mo6-O6C-Mo1	91.0 (2)	Mo6-O12B-Mo1	117.2 (3)

6100 independent reflections

3 standard reflections

frequency: 60 min

intensity decay: 3.2%

 $w = 1/[\sigma^2(F_0^2) + (0.0558P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+7.7029P]

 $\Delta \rho_{\rm max} = 1.61 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -2.47 \ {\rm e} \ {\rm \AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\theta_{\rm max} = 27.5^{\circ}$

5081 reflections with $I > 2\sigma(I)$

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O2C-H2\cdots O24T^{i}$	0.97 (6)	1.62 (7)	2.574 (8)	168 (8)
$O4C - H4 \cdot \cdot \cdot O13T^{i}$	0.95 (7)	1.61 (7)	2.556 (8)	175 (9)
$O6C - H6 \cdots O6C^{i}$	0.98	1.61	2.573 (12)	168
$O11B-H11\cdots O7B^{i}$	0.95 (8)	1.91 (8)	2.820 (9)	161 (10)
$O25W-H25A\cdots O13T^{ii}$	0.97	2.26	3.100 (12)	144
$O26W - H26A \cdots O7B^{iii}$	0.96	2.41	2.972 (13)	117
$O26W - H26B \cdot \cdot \cdot O21T^{iv}$	0.96	2.41	3.081 (15)	126
$O27W - H27A \cdots O1C^{v}$	0.97	2.06	2.812 (11)	133
$O27W - H27B \cdot \cdot \cdot O29W^{v}$	0.97	2.50	2.958 (15)	109
$O27W - H27B \cdot \cdot \cdot O5C$	0.97	2.20	2.980 (10)	136
$O28W - H28A \cdots O15T^{v}$	0.97	1.94	2.892 (11)	166
$O28W - H28B \cdot \cdot \cdot O18T^{iii}$	0.97	2.14	3.028 (11)	151
$O29W-H29B\cdots O3C^{v}$	0.96	1.93	2.586 (9)	123
$O29W-H29A\cdots O12B$	0.96	2.10	3.014 (9)	158

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x - 1, y, z + 1; (iii) x, y, z + 1; (iv) -x + 1, -y, -z + 2; (v) -x + 1, -y + 1, -z + 1.

The H atoms bonded to atoms O2C, O4C and O11B in the polyanion were located in a difference Fourier map and refined with a distance restraint of O-H = 0.85 (1) Å. Their displacement parameters were freely refined. The H atoms of the O3C and O6C cluster atoms and all OW water molecules were placed in calculated positions with a distance restraint of O-H = 0.85 (1) Å, except the O30W water molecule. They were included in the refinement in the ridingmodel approximation, with $U_{iso}(H) = 1.5U_{eq}(O)$. The occupancy of the H atom on atom O6C was fixed at 0.5 because of disorder. The H atoms of O30W could not be positioned geometrically or be reasonably located in an electron-density map. The highest peak in the difference map is 0.95 Å from K1, and the deepest hole is 0.74 Å from Pt.

Data collection: *STADI4* (Stoe & Cie, 1996); cell refinement: *STADI4*; data reduction: *X-RED* (Stoe & Cie, 1996); program(s) used to solve structure: *SHELXS97-2* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97-2* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97-2*.

Figure 2

A polyhedral view of a pair of heteropolyanions in (I), with the $O \cdots O$ contacts of the inter-anion hydrogen bonds shown as dashed lines. [Symmetry code: (i) 1 - x, -y, 1 - z].

References

- Anderson, J. S. (1937). Nature (London), 150, 850.
- Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR. Bonn, Germany.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Joo, H. C., Park, K. M. & Lee, U. (1994). Acta Cryst. C50, 1659-1661.
- Lee, U. & Joo, H.-C. (2004). Acta Cryst. E60, i33-i36.
- Lee, U. & Joo, H.-C. (2006a). Acta Cryst. E62, i231-i233.
- Lee, U. & Joo, H.-C. (2006b). Acta Cryst. E62, i241-i243.
- Lee, U. & Sasaki, Y. (1994). Bull. Korean Chem. Soc. 15, 37-45.
- Sheldrick, G. M. (1997). SHELXS97-2 and SHELXL97-2. University of Göttingen, Germany.
- Stoe & Cie (1996). STADI4 (Revision 1.09), X-RED (Revision 1.09) and X-SHAPE (Revision 1.06). Stoe & Cie, Darmstadt, Germany.